
Internet-Protokoll

Zentrum der Vermittlungsschicht und des Internets

Was ist das Internet-Protokoll (IP)?

- Wichtigste und am weitesten verbreitete Protokoll auf OSI-Schicht 3
- Ohne IP kein Zugang zum Internet!
- Auch für viele andere Netze stellt IP die Basis dar
- Verschiedenste Dienste nutzen IP:
 - Übermittlung von **Daten**, **Sprache und Video**
 - Onlinekonferenzen
 - Gesicherter Transport von Informationen für Dienste wie Onlinebanking

4	Transportschicht (Transport Layer)
3	Vermittlungsschicht
	(Network Layer)
2	(Network Layer) Sicherungsschicht (Data Link Layer)

Grundlagen bei der Entwicklung des IP

- Bislang betrachtet: Datenverkehr in einem lokalen Netzwerk (LAN)
 - Verhindern von Datenkollisionen mit Hilfe von Bridges/Switches durch Segmentierung in Kollisions-Domänen
 - Erreichbarkeit aller Stationen durch Broadcasts
- Ab hier: Wie funktioniert die Kommunikation weltweit/zwischen verschiedenen LANs?
- Schwierigkeiten:
 - Heterogene Netzwerke müssen verbunden werden
 - Teilweise sind die unterschiedlichen Netzwerke inkompatibel zueinander
 - Internet erzeugt für die Nutzer ein einziges, virtuelles Gesamtnetzwerk

Ziele bei der Entwicklung des IP

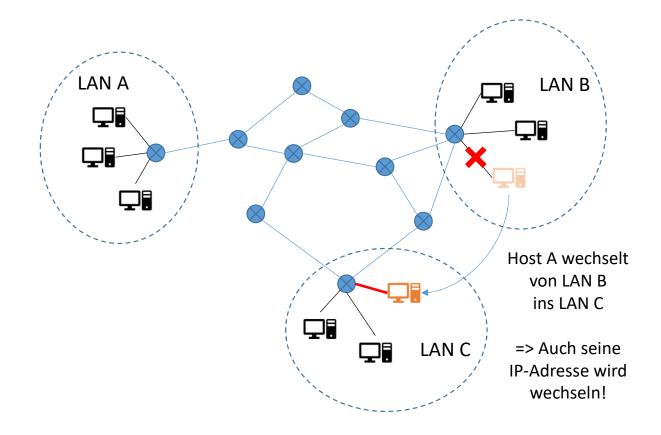
- Netz soll hochredundant, vermascht und sicher sein
- Ausfall von Knoten soll eigenständig durch Finden eines Alternativwegs umgangen werden = selbstkonvergent
- Intelligente Verkehrsweiterleitung:
 Anschluss neue Organisation (Firma, Uni, Schule, ...) ans Internet
 => neues LAN muss für Rest von außen autom. erreichbar werden,
 ohne manuelle Konfiguration!
- Wichtigste Aufgabe des IP:
 Wegfindung durch das Netz = Routing

Neue Adressen

- Weltweite Kommunikation: Jedes an das Internet angeschlossene Gerät benötigt eine weltweit eindeutige Adresse!
- Notwendige Basis: LOGISCHE Adressierung (im Gegensatz zur physischen Adresse)
- Adressvergabe der IP-Netze wird ZENTRAL verwaltet
- Zuständig dafür: Internet Assigned Numbers Authority (IANA)
- Für Europa: RIPE

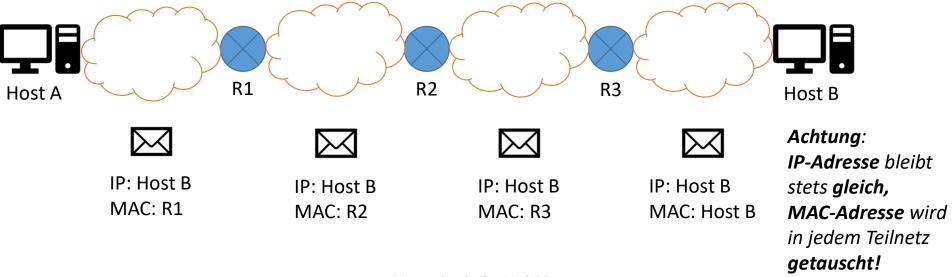
Grundsatzfrage

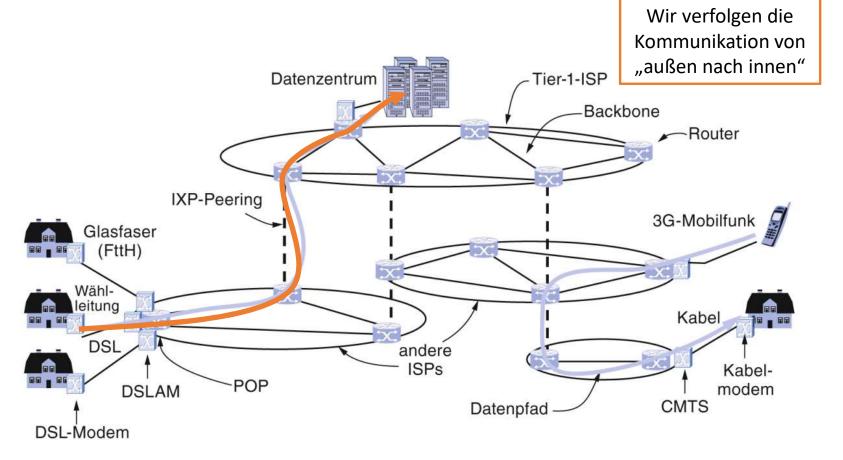
- Wieso werden Rechner im Internet nicht einfach mit Hilfe der physischen Adresse (MAC-Adresse) angesprochen?
- Problem: "flaches" Adressschema:
 - Aufbau MAC-Adresse, z. B. 00-80-41-ae-37-7e
 - Insgesamt 48 Bit lang
 - Meistens in **HEX-Darstellung** (byteweise)
 - Erster Teil (00-80-41): Herstellerkennung (Organizationally Unique Identifier, OUI)
 - Zweiter Teil (ae-37-7e): "Seriennummer"(Organizationally Unique Address, OUA)
 - KEINE Hierarchie (Gruppierung von Geräten) möglich!


Gedankenexperiment: Internet mit MAC

- Problem 1 UMFANG:
 JEDER Vermittlungsknoten müsste
 ALLE MAC-Adressen weltweit
 kennen (inklusive Standort/bzw.
 Route)
- Problem 2 DYNAMIK:
 - Wegfall/Erweiterung/Umzug eines Hosts oder
 - Austausch einer Netzwerkkarte
 - => alle Knoten müssten ständig aktualisiert werden

Lösung: hierarchische Adressen


- Logische Adressen werden an LAN geknüpft = Gruppierung der Hosts eines LANs
- Hostadressierung:
 - Host A hatte ursprünglich Adresse aus LAN B
 - Nach Umzug erhält er Adresse aus LAN C
- Vermittlungsknoten müssen sich nicht um Umzug kümmern, merken sich nur Netzadressen/Pfade zwischen den LANs


Zusammenspiel physische/logische Adresse

Wann wird die physische und wann die logische Adresse benötigt?

- Für das Endziel wird die IP-Adresse benötigt
- Für die Zwischenstationen die MAC-Adresse

Die Architektur des Internet

Vergleich Aufbau von Adressen Telefon/IP

Telefonnummer (0043 732 123456)

Landeskennung 0043

- internat. Konvention
- weltweit eindeutig
- · darf nicht geändert werden

Ortskennung 732

- unterliegt nat. Telekommbehörde
- dient zur internen Vermittlung
- Ortskennungen möglicherw. identisch

Anschlusskennung 123456

- unterliegt lok. Verwaltungsstelle
- muss wiederum nur im lokalen Ortsnetz eindeutig sein

IP-Adresse (85.31.21.106)

Netzkennung 85

- weltweit eindeutig
- · darf nicht geändert werden

Subnetzadresse 31.21

- wird vom Betreiber des Netzes verwendet
- dient der Untergruppierung
- nur innerhalb des eigenen Netzbereichs eindeutig
- Größe der Subnetze können flexibel gewählt werden

Hostadresse 106

- Firma mit vielen Zweigstellen aber wenigen Hosts?
- Firma mit wenigen, aber großen Zweigstellen?

Router

Telefonnetz

- Vorwahl muss innerhalb Ortsnetzes nicht gewählt werden
- Notwendig bei Verbindung in anderes Ortsnetz
- Unerheblich, welcher Bestandteil Vorwahl/Anschlusskennung ist
- Vermittlungsstelle muss Anteil kennen, ebenso wie Anschluss zum gewünschten Ortsnetz kennen

IP-Rechnernetz

- Rechner sind eigentlich nicht zwingend durch eine zentrale Instanz verbunden
- Kommunikation über gemeinsames Medium
- Selbst Switches arbeiten nur auf OSI-Schichten 1 und 2, unterteilen also das Kommunikationsmedium auf Schicht 3 nicht!
- Möchte ein Host mit einem anderen Netzwerk kommunizieren, muss er selbstständig eine Instanz ansprechen, die die Vermittlung übernimmt
- Dieses Gerät kennt den Weg (Route) zu den beteiligten Netzen = Router
- Host muss also zur Hostadresse stets auch die Netz- und die Subnetzadresse mitverwenden!

Aufbau IP-Adresse

- IP-Adresse besteht aus vier binären Oktetten
- Zwecks Übersichtlichkeit als Dezimalzahlen (0 ... 255) dargestellt
- Durch Punkte getrennt
- Systeme müssen anhand der Subnetzmaske unterscheiden zwischen
 - Netz-Adresse/Subnetz-Adresse und
 - Host-Adresse

Aufgabe: Umwandlung Dezimal-/Dualzahlen

- Für das Verständnis des Themas IP-Adressierung und IP-Subnetting ist es wichtig, die Abläufe auf binärer Ebene zu verstehen.
- Übe dazu das Umwandeln von Dezimal- in Dualzahlen und umgekehrt! @ Übungsaufgabe "Umwandlung Dezimal-Dualzahlen"
- Für das Umwandeln einer Dezimal- in eine Dualzahl gibt es zwei gebräuchliche Verfahren:
 - Zerlegungsverfahren (durch Subtrahieren): Dabei wird jeweils die größtmögliche Zweierpotenz subtrahiert.
 - Resteverfahren (durch Dividieren): Dabei wird wiederholt durch 2 dividiert und der Rest der Division (0 oder 1) mitgeschrieben.

Umwandlung einer Dezimal- in eine Dualzahl

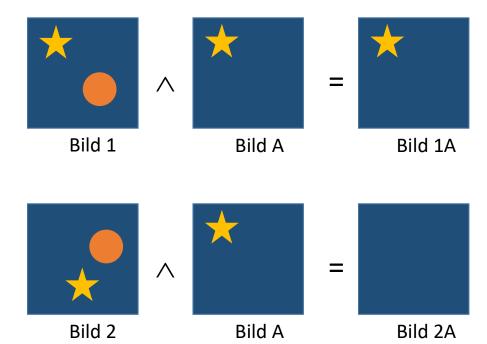
01.03.2023

$$123 = 2^{6} + 2^{5} + 2^{4} + 2^{3} + 2^{1} + 2^{0}$$

$$- \frac{64}{59} = 123_{10} = 0111 1011_{2}$$

$$- 32 5 2^{7} 2^{7} 2^{7} 2^{7}$$

Resteverfahren


$$123:2 = 61 + 1 \text{ Rest}$$
 $61:2 = 30 + 1 \text{ Rest}$
 $30:2 = 15 + 0 \text{ Rest}$
 $15:2 = 7 + 1 \text{ Rest}$
 $7:2 = 3 + 1 \text{ Rest}$
 $7:2 = 1 + 1 \text{ Rest}$
 $1:2 = 0 + 1 \text{ Rest}$
 $1:2 = 0 + 1 \text{ Rest}$
 $1:2 = 0 + 1 \text{ Rest}$

Subnetzmaske

- Besteht zunächst aus einer Reihe von binären Einsen, gefolgt von einer Reihe aus binären Nullen
- Die Subnetzmaske ist ebenso wie IP-Adresse
 - 32 Bit lang,
 - unterteilt in vier Oktette und
 - mit Punkten getrennt
- Beispiel: 1111 1111.1111 1111.0000 0000.0000 0000 = 255.255.0.0
- Angewendet (UND-Operation) auf IP-Adresse kann man die Grenze ermitteln zwischen
 - Netzanteil und
 - Hostanteil
- Weitere Schreibweise: CIDR-Notation (Classless Internet Domain Routing)
 - Nach IP-Adresse durch Trennzeichen /
 - Gibt die Anzahl der binären Einsen der Subnetzmaske an
 - Z. B.:
 - 192.168.1.1/16: dezimale Subnetzmaske = 255.255.0.0, binär = 1111 1111.1111 1111.0000 0000.0000 0000
 - 56.78.91.234/26: dezimale Subnetzmaske 255.255.255.192, binär = 1111 1111.1111 1111.1111 1111.1100 0000

Mathematische Grundlagen - Logisches UND

- Durch UND-Verknüpfung können Gemeinsamkeiten herausgefiltert werden
- Veranschaulichung:
 - Bilder 1 und 2 entsprechen jeweils einer bestimmten IP-Adresse mit
 - Stern = Netzanteil
 - Kreis = Hostanteil
 - Bild A entspricht der Subnetzmaske
 - Bild 1A = Netzanteil
 - Bild 2A = 0 (Remote-Adresse)

Verknüpfung IP-Adresse ∧ Subnetzmaske

Beispiele:

• Adresse 1: **192.168.0.51**

• Adresse 2: **192.168.45.123**

• Subnetzmaske 255.255.255.0

Wal	nrheitstabelle U	JND
0	0	0
0	1	0
1	0	0
1	1	1

IP-Adresse ①	192.168.0.51	1100 0000.1010 1000.0000 0000.0011 0011
Subnetzmaske	255.255.255.0	1111 1111.1111 1111.1111 1111.0000 0000
Resultat UND-Verkn.		1100 0000.1010 1000.0000 0000.0000 0000
Netzadresse =	192.168.0.0	
IP-Adresse ②	192.168.45.123	1100 0000.1010 1000.0010 1101.0111 1011
Subnetzmaske	255.255.255.0	1111 1111.1111 1111.1111 1111.0000 0000
Resultat UND-Verkn.		1100 0000.1010 1000.0010 1101.0000 0000
Netzadresse =	192.168.45.0	

=> Adressen ①
und ②
stammen aus
unterschiedliche
n Netzen!

Verknüpfung IP-Adresse ∧ Subnetzmaske

Beispiele:

• Adresse 1: **192.168.0.51**

• Adresse 2: **192.168.45.123**

• Subnetzmaske **255.255.<u>192</u>.0**

Wal	hrheitstabelle U	JND
0	0	0
0	1	0
1	0	0
1	1	1

IP-Adresse ①	192.168.0.51	1100 0000.1010 1000.0000 0000.0011 0011
Subnetzmaske	255.255.240.0	1111 1111.1111 1111.1100 0000.0000 0000
Resultat UND-Verkn.		1100 0000.1010 1000.0000 0000.0000 0000
Netzadresse =	192.168.0.0	
IP-Adresse ②	192.168.45.123	1100 0000.1010 1000.0010 1101.0111 1011
Subnetzmaske	255.255.240.0	1111 1111.1111 1111.1100 0000.0000 0000
Resultat UND-Verkn.		1100 0000.1010 1000.0000 0000.0000 0000
Netzadresse =	192.168.0.0	

=> Adressen ①
und ②
stammen aus
dem selben Netz!

Sind Rechner im selben Netz?

- Bedingung: Netzadressen beider Rechner müssen übereinstimmen!
- Beispiel:
 - Rechner A: 192.168.0.51/255.255.255.0
 - Rechner B: 192.168.0.71/255.255.255.0
 - Rechner C: 192.168.11.21/255.255.255.0
- Ergebnis:
 - Rechner A und B befinden sich im selben Netz
 - Rechner C befindet sich in einem entfernten Netz (remote network)

Rechner A:	192.168.0.51	1100 0000.1010 1000.0000 0000.0011 0011
Subnetzmaske	255.255.255.0	1111 1111.1111 1111.1111 1111.0000 0000
UND		1100 0000.1010 1000.0000 0000.0000 0000
Netzadresse:	192.168.0.0	
Rechner B:	192.168.0.71	1100 0000.1010 1000.0000 0000.0100 0111
Subnetzmaske	255.255.255.0	1111 1111.1111 1111.1111 1111.0000 0000
UND		1100 0000.1010 1000.0000 0000.0000 0000
UND Netzadresse:	192.168.0.0	1100 0000.1010 1000.0000 0000.0000 0000
0.12	192.168.0.0 192.168.11.21	1100 0000.1010 1000.0000 0000.0000 0000 1100 0000.1010 1000.0000 1011.0001 0101
Netzadresse:		
Netzadresse: Rechner C:	192.168.11.21	1100 0000.1010 1000.0000 1011.0001 0101

Aufgabe: Selbes Netz?

- Finde mithilfe der Subnetzmaske heraus, ob sich die IP-Adressen im selben Netz befinden!
- @ Übungsaufgabe "Selbes Netz Teil 1"

Historische Netzwerkklassen I

- Bei der Entwicklung des IP in den 1970-er Jahren ging man davon aus, dass $2^{32} = 4.294.967.296$ Adressen ausreichend sein werden
- Es kam anders ...

Historische Netzwerkklassen II

• Historisch wurde der Adressraum in Netzwerkklassen unterteilt:

Netzwerkklasse	Adressbereich	Erstes Oktett	Subnetzmaske	Maximale Anzahl Host-Adressen	Einsatzzweck
Klasse A (Oktett 1 = Netz)	0.0.0.0 bis 127.255.255.255	0*** ***	255.0.0.0	$2^{24} = 16.777.216$	Sehr große Netzwerke
Klasse B (Oktett 1 + 2 = Netz)	128.0.0.0 bis 191.255.255.255	10** ***	255.255.0.0	$2^{16} = 65.536$	Mittlere Netzwerke
Klasse C (Oktett 1 + 2 + 3 = Netz)	192.0.0.0 bis 223.255.255.255	110* ****	255.255.255.0	$2^8 = 256$	Kleine Netzwerke
Klasse D (speziell)	224.0.0.0 bis 239.255.255.255	1110 ****	nicht	definiert	Multicast-Gruppen
Klasse E (speziell)	240.0.0.0 bis 255.255.255.255	1111 ****	nicht	definiert	Experimentelle Adressen

Classless Interdomain Routing (CIDR)

- 1993 eingeführt, Zweck:
 - 1. Verkleinern der Routingtabellen ("Supernetting")
 - 2. Effizienteres Nutzen des IPv4-Adressraums
- Subnetzmasken bisher:
 - 1111 1111.0000 0000.0000 0000.0000 0000 (255.0.0.0)
 - 1111 1111.1111 1111.0000 0000.0000 0000 (255.255.0.0)
 - 1111 1111.1111 1111.1111 1111.0000 0000 (255.255.255.0)
- Neu:
 - Z. B.: 1111 1111.1100 0000.0000 0000.0000 0000 = 255.192.0.0 (/10)

Anzahl Hostbits $h = 22 \Rightarrow$ Anzahl der Host-Adressen $H = 2^{22} = 4.194.302$

Aufgabe: Selbes Netz (CIDR)?

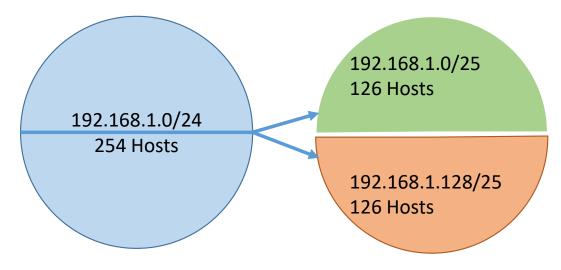
- Finde mithilfe der Subnetzmaske heraus, ob sich die IP-Adressen im selben Netz befinden!
- @ Übungsaufgabe "Selbes Netz Teil 2"

Private Netze

- Adressen aus privaten Netzen werden von der IANA im Internet nicht vergeben.
- Diese stehen für die private Nutzung in lokalen Netzwerken zur Verfügung und
- werden im Internet nicht geroutet!

Klasse	Subnetzmaske		Anzahl Netze (historisch gemäß Netzklassen)
Klasse A	255.0.0.0 (/8)	10.0.0.0 bis 10.255.255.255	1 Netz (à 16.777.216 Adressen)
Klasse B	255.240.0.0 (/12)	172.16.0.0 bis 172.31.255.255	16 Netze (à 65.536 Adressen)
Klasse C	255.255.0.0 (/16)	192.168.0.0 bis 192.168.255.255	256 Netze (à 256 Adressen)

Broadcast-Domänen


- Broadcasts dienen in einem Computernetz verschiedenen Aufgaben (z. B. wenn ein Gerät noch keine IP-Adresse besitzt) und sind notwendig damit ein Netzwerk ordnungsgemäß funktioniert
- Alle Geräte die durch Broadcast angesprochen werden = Broadcast-Domäne
- Meistens ist auch eine Antwort der Geräte auf einen Broadcast zu erwarten
 Je größer ein Netzwerk, desto größer ist die Netzwerklast durch Broadcasts
- Bei sehr großen Netzen stößt man an die Grenze der Netzwerkauslastung
- => Versuch, Netzwerke in Subnetze zu unterteilen
- Verbindung der Subnetze durch Router
- Router leiten keine Broadcasts weiter => Broadcast-Segmentierung!

Subnetting

- Unterteilung bestehender Netzwerke in kleinere Segmente
- Alle Rechner im selben Segment haben eine logische Verbindung
- Segmente müssen stets groß genug sein, um die benötigte Anzahl an Hosts zu beinhalten
- Segmentierung wird über eine Erweiterung der (Standard-)
 Subnetzmaske gelöst

Subnetting Prinzip

- Ursprüngliches (Klasse-C) Netz: 192.168.1.0 mit 255.255.255.0 mit 256 Adressen:
 - 1 Netzadresse
 - 254 Hostadressen
 - 1 Broadcastadresse
- NEU: 2 Subnetze, je
 - 1 Netzadresse
 - 126 Hostadressen
 - 1 Broadcastadresse

Beispiel

- ursprüngliches Netz: 192.168.1.0 mit Standard-Klasse-C-Subnetzmaske 255.255.255.0
- Unterteilung in vier neue Netzwerke mittels Subnetzmaske 255.255.255.192 (um zwei Bits erweitert):

Netzwerkadresse	Hostadressen	Broadcastadresse
192.168.1.0	192.168.1.1 bis 192.168.1.62	192.168.1.63
192.168.1.64	192.168.1.65 bis 192.168.1.126	192.168.1.127
192.168.1.128	192.168.1.129 bis 192.168.1.190	192.168.1.191
192.168.1.192	192.168.1.193 bis 192.168.1.254	192.168.1.255

• Details dazu siehe später (Subnetting) ...

(Sub-) Netz-Adresse

- ... besteht im Hostbereich nur aus binären Nullen
- Hostbereich = Bereich, der durch binäre Nullen in der Subnetzmaske gekennzeichnet ist
- Beispiel: Subnetz 192.168.1.0 mit 255.255.255.192

	Erstes Oktett	Zweites Oktett	Drittes Oktett	Viertes Oktett
Adresse dezimal	192	168	1	0
Adresse binär	1100 0000	1010 1000	0000 0001	00 00 0000
Subnetzmaske	1111 1111	1111 1111	1111 1111	11 00 0000

Broadcast-Adresse

- ... besteht im Hostbereich nur aus binären Einsen
- Mit Hilfe der Broadcast-Adresse werden alle Systeme im Subnetz angesprochen
- Beispiel: Subnetz 192.168.1.0 mit 255.255.255.192

	Erstes Oktett	Zweites Oktett	Drittes Oktett	Viertes Oktett
Adresse dezimal	192	168	1	63
Adresse binär	1100 0000	1010 1000	0000 0001	00 11 1111
Subnetzmaske	1111 1111	1111 1111	1111 1111	11 00 0000

Hostbereich

- ... steht für die Adressierung der Geräte in einem Netzwerk bereit
- umfasst alle Adressen zwischen Netz- und Broadcast-Adresse
- Beispiel: Subnetz **192.168.1.0** mit **255.255.255.192**

Erste Hostadresse	Erstes Oktett	Zweites Oktett	Drittes Oktett	Viertes Oktett
Adresse dezimal	192	168	1	1
Adresse binär	1100 0000	1010 1000	0000 0001	00 00 0001
Subnetzmaske	1111 1111	1111 1111	1111 1111	11 00 0000
Letzte Hostadresse	Erstes Oktett	Zweites Oktett	Drittes Oktett	Viertes Oktett
Letzte Hostadresse Adresse dezimal	Erstes Oktett 192	Zweites Oktett 168	Drittes Oktett 1	Viertes Oktett 62

Anzahl der verfügbaren Host-Adressen

- Größe des Hostanteils (Nullen der Subnetzmaske) bestimmt die Anzahl der verfügbaren Host-Adressen des (Sub-) Netzes
- Netz- und Broadcast-Adresse können keinen Hosts zugewiesen werden!
- Berechnungsvorschrift:

$$H = 2^h - 2$$

mit

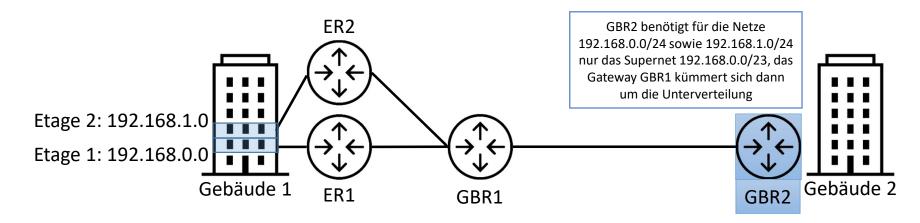
H ... Anzahl der verfügbaren Hostadressen

h ... Anzahl der Hostbits

• Beispiel: 192.168.1.0 mit 255.255.255.0

$$255.255.255.0 \Rightarrow h = 8$$

$$\Rightarrow H = 2^8 - 2 = 256 - 2 = 254$$
 Adressen


Folgenetze

- Für die weiteren Subnetze des gleichen Netzes gelten die identischen Bestimmungen für
 - Netzwerkadresse
 - Broadcast-Adresse
 - Hostbereich
- Eigentliche Netzadresse bleibt gleich, lediglich
- die erweiterten Subnetzbits dürfen sich ändern!

Erstes Netz	192.168.1. 00 ** ****
Zweites Netz	192.168.1. 01 ** ****
Drittes Netz	192.168.1. 10 ** ****
Viertes Netz	192.168.1. 11 ** ***

Supernetting

- Dient der Zusammenfassung mehrerer kleinerer Netze zu einem größeren Ganzen
- Wichtig bei der Routenzusammenfassung = Route-Aggregation
- Voraussetzung: Classless Interndomain Routing (CIDR)

